Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 269: 116298, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493727

RESUMO

The cannabinoid system is one of the most investigated neuromodulatory systems because of its involvement in multiple pathologies such as cancer, inflammation, and psychiatric diseases. Recently, the CB2 receptor has gained increased attention considering its crucial role in modulating neuroinflammation in several pathological conditions like neurodegenerative diseases. Here we describe the rational design of pyrrole-based analogues, which led to a potent and pharmacokinetically suitable CB2 full agonist particularly effective in improving cognitive functions in a scopolamine-induced amnesia murine model. Therefore, we extended our study by investigating the interconnection between CB2 activation and neurotransmission in this experimental paradigm. To this purpose, we performed a MALDI imaging analysis on mice brains, observing that the administration of our lead compound was able to revert the effect of scopolamine on different neurotransmitter tones, such as acetylcholine, serotonin, and GABA, shedding light on important networks not fully explored, so far.


Assuntos
Canabinoides , Receptor CB2 de Canabinoide , Camundongos , Animais , Pirróis/farmacologia , Canabinoides/farmacologia , Neurotransmissores/farmacologia , Derivados da Escopolamina , Agonistas de Receptores de Canabinoides/farmacologia , Receptor CB1 de Canabinoide
2.
ACS Chem Neurosci ; 15(5): 955-971, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38372253

RESUMO

Alzheimer's disease (AD) is a neurodegenerative form of dementia characterized by the loss of synapses and a progressive decline in cognitive abilities. Among current treatments for AD, acetylcholinesterase (AChE) inhibitors have efficacy limited to symptom relief, with significant side effects and poor compliance. Pharmacological agents that modulate the activity of type-2 cannabinoid receptors (CB2R) of the endocannabinoid system by activating or blocking them have also been shown to be effective against neuroinflammation. Herein, we describe the design, synthesis, and pharmacological effects in vitro and in vivo of dual-acting compounds that inhibit AChE and butyrylcholinesterase (BChE) and target CB2R. Within the investigated series, compound 4g proved to be the most promising. It achieved IC50 values in the low micromolar to submicromolar range against both human cholinesterase isoforms while antagonizing CB2R with Ki of 31 nM. Interestingly, 4g showed neuroprotective effects on the SH-SY5Y cell line thanks to its ability to prevent oxidative stress-induced cell toxicity and reverse scopolamine-induced amnesia in the Y-maze forced alternation test in vivo.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores de Canabinoides , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
3.
Mol Neurobiol ; 61(3): 1580-1592, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37731080

RESUMO

Osteoarthritis (OA) is one of the most common joint disorder, with pain accompanied by functional impairment, as the most pronounced clinical symptom. Currently used pharmacotherapy involves symptomatic treatment that do not always provide adequate pain relief. This may be due to concomitance of central sensitization and development of neuropathic features in OA patients. Here we performed studies in the animal model of OA to investigate of the neuropathic component. Intraarticular injection of monoiodoacetate (MIA, 1 mg) was used to induce OA in Wistar male rats. Development of pain phenotype was assessed by behavioral testing (PAM test and von Frey's test), while corresponding changes in dorsal root ganglia (DRGs L3-L5) and spinal cord (SC) gene expression were assessed by means of qRT-PCR technique. We also performed microtomography of OA-affected knee joints to correlate the level of bone degradation with observed behavioral and molecular changes. We observed gradually developing remote allodynia after MIA treatment, indicating the presence of neuropathic component. Our results showed that, among DRGs innervating knee joint, development of central sensitization is most likely due to peripheral input of stimuli through DRG L5. In SC, development of secondary hypersensitivity correlated with increased expression of TAC1 and NPY. Our studies provided molecular records on abnormal activation of pain transmission markers in DRG and SC during development of OA that are responsible for the manifestation of neuropathic features. The obtained results increase insight into molecular changes occurring in the neuronal tissue during OA development and may contribute to readdressing treatment paradigms.


Assuntos
Neuralgia , Osteoartrite , Humanos , Ratos , Animais , Masculino , Fatores Corda/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças , Ratos Wistar , Osteoartrite/complicações , Osteoartrite/diagnóstico por imagem , Osteoartrite/metabolismo , Neuralgia/metabolismo , Medula Espinal/metabolismo , Gânglios Espinais/metabolismo
4.
Molecules ; 28(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37446625

RESUMO

Selective ligands of the CB2 receptor are receiving considerable attention due to their potential as therapeutic agents for a variety of diseases. Recently, 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamide derivatives were shown to act at the CB2 receptor either as agonists or as inverse agonists/antagonists in vitro and to have anti-osteoarthritic activity in vivo. In this article, we report the synthesis, pharmacological profile, and molecular modeling of a series of twenty-three new 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamides with the aim of further developing this new class of selective CB2 ligands. In addition to these compounds, seven other analogs that had been previously synthesized were included in this study to better define the structure-activity relationship (SAR). Ten of the new compounds studied were found to be potent and selective ligands of the CB2 receptor, with Ki values ranging from 48.46 to 0.45 nM and CB1/CB2 selectivity indices (SI) ranging from >206 to >4739. In particular, compounds 54 and 55 were found to be high-affinity CB2 inverse agonists that were not active at all at the CB1 receptor, whereas 57 acted as an agonist. The functional activity profile of the compounds within this structural class depends mainly on the substitution pattern of the pyrazole ring.


Assuntos
Canabinoides , Receptor CB2 de Canabinoide , Ligantes , Agonismo Inverso de Drogas , Relação Estrutura-Atividade , Piridinas , Receptor CB1 de Canabinoide
5.
Pharmacol Res ; 189: 106683, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736415

RESUMO

In spite of the huge advancements in both diagnosis and interventions, hormone refractory prostate cancer (HRPC) remains a major hurdle in prostate cancer (PCa). Metabolic reprogramming plays a key role in PCa oncogenesis and resistance. However, the dynamics between metabolism and oncogenesis are not fully understood. Here, we demonstrate that two multi-target natural products, cannabidiol (CBD) and cannabigerol (CBG), suppress HRPC development in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model by reprogramming metabolic and oncogenic signaling. Mechanistically, CBD increases glycolytic capacity and inhibits oxidative phosphorylation in enzalutamide-resistant HRPC cells. This action of CBD originates from its effect on metabolic plasticity via modulation of VDAC1 and hexokinase II (HKII) coupling on the outer mitochondrial membrane, which leads to strong shifts of mitochondrial functions and oncogenic signaling pathways. The effect of CBG on enzalutamide-resistant HRPC cells was less pronounced than CBD and only partially attributable to its action on mitochondria. However, when optimally combined, these two cannabinoids exhibited strong anti-tumor effects in TRAMP mice, even when these had become refractory to enzalutamide, thus pointing to their therapeutical potential against PCa.


Assuntos
Canabidiol , Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Canabidiol/farmacologia , Morte Celular , Mitocôndrias/metabolismo , Neoplasias da Próstata/metabolismo , Fosforilação Oxidativa , Carcinogênese/metabolismo , Hormônios/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo
6.
Eur J Med Chem ; 248: 115109, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36657299

RESUMO

Cannabinoid type 2 receptor (CB2R) is a G-protein-coupled receptor that, together with Cannabinoid type 1 receptor (CB1R), endogenous cannabinoids and enzymes responsible for their synthesis and degradation, forms the EndoCannabinoid System (ECS). In the last decade, several studies have shown that CB2R is overexpressed in activated central nervous system (CNS) microglia cells, in disorders based on an inflammatory state, such as neurodegenerative diseases, neuropathic pain, and cancer. For this reason, the anti-inflammatory and immune-modulatory potentials of CB2R ligands are emerging as a novel therapeutic approach. The design of selective ligands is however hampered by the high sequence homology of transmembrane domains of CB1R and CB2R. Based on a recent three-arm pharmacophore hypothesis and latest CB2R crystal structures, we designed, synthesized, and evaluated a series of new N-adamantyl-anthranil amide derivatives as CB2R selective ligands. Interestingly, this new class of compounds displayed a high affinity for human CB2R along with an excellent selectivity respect to CB1R. In this respect, compounds exhibiting the best pharmacodynamic profile in terms of CB2R affinity were also evaluated for the functional behavior and molecular docking simulations provided a sound rationale by highlighting the relevance of the arm 1 substitution to prompt CB2R action. Moreover, the modulation of the pro- and anti-inflammatory cytokines production was also investigated to exert the ability of the best compounds to modulate the inflammatory cascade.


Assuntos
Amidas , Canabinoides , Humanos , Simulação de Acoplamento Molecular , Endocanabinoides , Anti-Inflamatórios , Canabinoides/farmacologia , Receptores de Canabinoides , Receptor CB2 de Canabinoide , Ligantes
7.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675062

RESUMO

Conformational changes of 5-chloro-3-nitro-2-hydroxyacetophenone were studied by experimental and theoretical methods. Phototransformations of the compound were induced in low-temperature argon matrices by using UV radiation, which was followed by FT-IR measurements. Two types of changes within the molecule were detected: rotations of the hydroxyl and acetyl groups. A new conformer without an intramolecular hydrogen bond was generated upon irradiation with λ = 330 nm, whereas the reverse reaction was observed at 415 nm.


Assuntos
Temperatura Baixa , Raios Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Argônio/química , Lasers
8.
J Med Chem ; 66(1): 235-250, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36542836

RESUMO

Cannabinoid type 2 receptor (CB2R), belonging to the endocannabinoid system, is overexpressed in pathologies characterized by inflammation, and its activation counteracts inflammatory states. Fatty acid amide hydrolase (FAAH) is an enzyme responsible for the degradation of the main endocannabinoid anandamide; thus, the simultaneous CB2R activation and FAAH inhibition may be a synergistic anti-inflammatory strategy. Encouraged by principal component analysis (PCA) data identifying a wide chemical space shared by CB2R and FAAH ligands, we designed a small library of adamantyl-benzamides, as potential dual agents, CB2R agonists, and FAAH inhibitors. The new compounds were tested for their CB2R affinity/selectivity and CB2R and FAAH activity. Derivatives 13, 26, and 27, displaying the best pharmacodynamic profile as CB2R full agonists and FAAH inhibitors, decreased pro-inflammatory and increased anti-inflammatory cytokines production. Molecular docking simulations complemented the experimental findings by providing a molecular rationale behind the observed activities. These multitarget ligands constitute promising anti-inflammatory agents.


Assuntos
Canabinoides , Endocanabinoides/metabolismo , Receptor CB2 de Canabinoide , Simulação de Acoplamento Molecular , Benzamidas/farmacologia , Anti-Inflamatórios/farmacologia , Amidoidrolases , Agonistas de Receptores de Canabinoides , Receptor CB1 de Canabinoide
9.
Cannabis Cannabinoid Res ; 8(5): 779-789, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36318796

RESUMO

Objective: Osteoarthritis (OA) is common degenerative joint disease, mostly characterized by gradual cartilage breakdown. Currently there are no disease-modifying drugs available, therefore, there is an increasing need for basic research to focus on cartilage function in OA. Changes in cannabinoid receptor 2 (CB2) expression were observed in the OA-affected joints, although its action on cartilage chondrocytes remain unclear. We studied the action of dimethylbutyl-deoxy-delta-8-THC (JWH-133), selective CB2 agonist, on chondrocytes metabolism using both in vitro and in vivo studies. Design: Intraarticular (i.a.) injection of monoiodoacetate (MIA) was used to induce OA in rats. OA-related pain symptoms were assessed by pressure application measurements (PAMs). Primary human chondrocytes treated with MIA were used to investigate action of JWH-133 on chondrocytes viability, proliferation, and motility. Cannabinoid system components, inflammatory cytokines and metalloproteinases (MMPs) expression was measured on messenger RNA and protein levels in chondrocytes and animal cartilage. Results: Repeated, i.a. administration of JWH-133 showed antinociceptive potential in PAM, as well as decreased levels of MMPs, which suggests that CB2 agonism may modify degradation of cartilage. JWH-133 administration partially reduced toxicity, increased proliferation, and chondrocytes' migration. Moreover, our data suggest that CB2 agonism leads to alleviation of MMPs expression both in vitro and in vivo. Conclusions: In this study, we demonstrate modifying effect of JWH-133 local administration on cartilage metabolism and MMP13 expression that was shown to be involved in cartilage degradation. CB2 receptors' activation may be of benefit for chondrocytes' proliferation, therefore delaying disease progression. Our results propose direction of studies on OA-modifying treatment that can benefit in management of human OA.


Assuntos
Canabinoides , Cartilagem Articular , Osteoartrite , Ratos , Humanos , Animais , Cartilagem Articular/metabolismo , Metaloproteases/metabolismo , Metaloproteases/farmacologia , Metaloproteases/uso terapêutico , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Regeneração
10.
Molecules ; 27(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500256

RESUMO

Cannabinoid type 1 (hCB1) and type 2 (hCB2) receptors are pleiotropic and crucial targets whose signaling contributes to physiological homeostasis and its restoration after injury. Being predominantly expressed in peripheral tissues, hCB2R represents a safer therapeutic target than hCB1R, which is highly expressed in the brain, where it regulates processes related to cognition, memory, and motor control. The development of hCB2R ligands represents a therapeutic opportunity for treating diseases such as pain, inflammation and cancer. Identifying new selective scaffolds for cannabinoids and determining the structural determinants responsible for agonism and antagonism are priorities in drug design. In this work, a series of N-[1,3-dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulfonamides is designed and synthesized and their affinity for human hCB1R and hCB2R is determined. Starting with a scaffold selected from the NIH Psychoactive Drug Screening Program Repository, through a combination of molecular modeling and structure-activity relationship studies, we were able to identify the chemical features leading to finely tuned hCB2R selectivity. In addition, an in silico model capable of predicting the functional activity of hCB2R ligands was proposed and validated. The proposed receptor activation/deactivation model enabled the identification of four pure hCB2R-selective agonists that can be used as a starting point for the development of more potent ligands.


Assuntos
Agonistas de Receptores de Canabinoides , Canabinoides , Humanos , Ligação Proteica , Ligantes , Agonistas de Receptores de Canabinoides/química , Relação Estrutura-Atividade , Sulfonamidas , Receptor CB2 de Canabinoide , Receptor CB1 de Canabinoide
11.
Molecules ; 27(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745029

RESUMO

The structure, tautomerization pathways, vibrational spectra, and photochemistry of 2-amino-4-methylthiazole (AMT) molecule were studied by matrix isolation FTIR spectroscopy and DFT calculations undertaken at the B3LYP/6-311++G(3df,3pd) level of theory. The most stable tautomer with the five-membered ring stabilized by two double C=C and C=N bonds, was detected in argon matrices after deposition. When the AMT/Ar matrices were exposed to 265 nm selective irradiation, three main photoproducts, N-(1-sulfanylprop-1-en-2-yl)carbodiimide (fp1), N-(1-thioxopropan-2-yl)carbodiimide (fp2) and N-(2-methylthiiran-2-yl)carbodiimide (fp3), were photoproduced by a cleavage of the CS-CN bond together with hydrogen atom migration. The minor photoreaction caused by the cleavage of the CS-CC bond and followed by hydrogen migration formed 2-methyl-1H-azirene-1-carbimidothioic acid (fp15). We have also found that cleavage of the CS-CN bond followed by disruption of the N-C bond produced cyanamide (fp11) and the C(CH3)=CH-S biradical that transformed into 2-methylthiirene (fp12) and further photoreactions produced 1-propyne-1-thiole (fp13) or methylthioketene (fp14). Cleavage of the CS-CC bond followed by disruption of the N-C bond produced propyne (fp22) and the S-C(NH2)=N biradical that transformed into 3-aminethiazirene (fp23); further photoreactions produced N-sulfanylcarbodiimide (fp25). As a result of these transformations, several molecular complexes were identified as photoproducts besides new molecules in the AMT photolysis process.


Assuntos
Carbodi-Imidas , Hidrogênio , Modelos Moleculares , Fotoquímica , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Cells ; 10(9)2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34571971

RESUMO

The endocannabinoids 2-arachidonoyl-glycerol and N-arachidonoyl-ethanolamine are lipids regulating many physiological processes, notably inflammation. Endocannabinoid hydrolysis inhibitors are now being investigated as potential anti-inflammatory agents. In addition to 2-arachidonoyl-glycerol and N-arachidonoyl-ethanolamine, the endocannabinoidome also includes other monoacylglycerols and N-acyl-ethanolamines such as 1-linoleoyl-glycerol (1-LG) and N-linoleoyl-ethanolamine (LEA). By increasing monoacylglycerols and/or N-acyl-ethanolamine levels, endocannabinoid hydrolysis inhibitors will likely increase the levels of their metabolites. Herein, we investigated whether 1-LG and LEA were substrates for the 15-lipoxygenase pathway, given that both possess a 1Z,4Z-pentadiene motif, near their omega end. We thus assessed how human eosinophils and neutrophils biosynthesized the 15-lipoxygenase metabolites of 1-LG and LEA. Linoleic acid (LA), a well-documented substrate of 15-lipoxygenases, was used as positive control. N-13-hydroxy-octodecadienoyl-ethanolamine (13-HODE-EA) and 13-hydroxy-octodecadienoyl-glycerol (13-HODE-G), the 15-lipoxygenase metabolites of LEA and 1-LG, were synthesized using Novozym 435 and soybean lipoxygenase. Eosinophils, which express the 15-lipoxygenase-1, metabolized LA, 1-LG, and LEA into their 13-hydroxy derivatives. This was almost complete after five minutes. Substrate preference of eosinophils was LA > LEA > 1-LG in presence of 13-HODE-G hydrolysis inhibition with methyl-arachidonoyl-fluorophosphonate. Human neutrophils also metabolized LA, 1-LG, and LEA into their 13-hydroxy derivatives. This was maximal after 15-30 s. Substrate preference was LA ≫ 1-LG > LEA. Importantly, 13-HODE-G was found in humans and mouse tissue samples. In conclusion, our data show that human eosinophils and neutrophils metabolize 1-LG and LEA into the novel endogenous 15-lipoxygenase metabolites 13-HODE-G and 13-HODE-EA. The full biological importance of 13-HODE-G and 13-HODE-EA remains to be explored.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Eosinófilos/enzimologia , Ácidos Linoleicos/metabolismo , Neutrófilos/enzimologia , Animais , Humanos , Cinética , Camundongos , Simulação de Acoplamento Molecular , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ligação Proteica , Receptores de Canabinoides/metabolismo , Especificidade por Substrato , Canais de Cátion TRPV/metabolismo
13.
Cells ; 10(5)2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068882

RESUMO

Bone is a highly complex and metabolically active tissue undergoing a continuous remodeling process, which endures throughout life. A complex cell-signaling system that plays role in regulating different physiological processes, including bone remodeling, is the endocannabinoid system (ECS). Bone mass expresses CB1 and CB2 cannabinoid receptors and enzymatic machinery responsible for the metabolism of their endogenous ligands, endocannabinoids (AEA and 2-AG). Exogenous AEA is reported to increase the early phase of human osteoblast differentiation in vitro. However, regarding this cell context little is known about how endocannabinoids and endocannabinoid-related N-acylethanolamines like PEA and OEA are modulated, in vitro, during cell differentiation and, in vivo, over time up to adulthood. Here we characterized the endocannabinoid tone during the different phases of the osteoblast differentiation process in MC3T3-E1 cells, and we measured endocannabinoid levels in mouse femurs at life cycle stages characterized by highly active bone growth (i.e., of juvenile, young adult, and mature adult bone). Endocannabinoid tone was significantly altered during osteoblast differentiation, with substantial OEA increment, decline in 2-AG and AEA, and consistent modulation of their metabolic enzymes in maturing and mineralized MC3T3-E1 cells. Similarly, in femurs, we found substantial, age-related, decline in 2-AG, OEA, and PEA. These findings can expand existing knowledge underlying physiological bone cell function and contribute to therapeutic strategies for preventing bone-related metabolic changes accruing through lifespan.


Assuntos
Endocanabinoides/metabolismo , Osteoblastos , Osteogênese , Animais , Diferenciação Celular , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/metabolismo
14.
Molecules ; 26(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067498

RESUMO

Conformational and polymorphic states in the nitro-derivative of o-hydroxy acetophenone have been studied by experimental and theoretical methods. The potential energy curves for the rotation of the nitro group and isomerization of the hydroxyl group have been calculated by density functional theory (DFT) to estimate the barriers of the conformational changes. Two polymorphic forms of the studied compound were obtained by the slow and fast evaporation of polar and non-polar solutions, respectively. Both of the polymorphs were investigated by Infrared-Red (IR) and Raman spectroscopy, Incoherent Inelastic Neutron Scattering (IINS), X-ray diffraction, nuclear quadrupole resonance spectroscopy (NQR), differential scanning calorimetry (DSC) and density functional theory (DFT) methods. In one of the polymorphs, the existence of a phase transition was shown. The position of the nitro group and its impact on the crystal cell of the studied compound were analyzed. The conformational equilibrium determined by the reorientation of the hydroxyl group was observed under argon matrix isolation. An analysis of vibrational spectra was achieved for the interpretation of conformational equilibrium. The infrared spectra were measured in a wide temperature range to reveal the spectral bands that were the most sensitive to the phase transition and conformational equilibrium. The results showed the interrelations between intramolecular processes and macroscopic phenomena in the studied compound.

15.
Molecules ; 26(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071439

RESUMO

In the last years, the connection between the endocannabinoid system (eCS) and neuroprotection has been discovered, and evidence indicates that eCS signaling is involved in the regulation of cognitive processes and in the pathophysiology of Alzheimer's disease (AD). Accordingly, pharmacotherapy targeting eCS could represent a valuable contribution in fighting a multifaceted disease such as AD, opening a new perspective for the development of active agents with multitarget potential. In this paper, a series of coumarin-based carbamic and amide derivatives were designed and synthesized as multipotent compounds acting on cholinergic system and eCS-related targets. Indeed, they were tested with appropriate enzymatic assays on acetyl and butyryl-cholinesterases and on fatty acid amide hydrolase (FAAH), and also evaluated as cannabinoid receptor (CB1 and CB2) ligands. Moreover, their ability to reduce the self-aggregation of beta amyloid protein (Aß42) was assessed. Compounds 2 and 3, bearing a carbamate function, emerged as promising inhibitors of hAChE, hBuChE, FAAH and Aß42 self-aggregation, albeit with moderate potencies, while the amide 6 also appears a promising CB1/CB2 receptors ligand. These data prove for the new compounds an encouraging multitarget profile, deserving further evaluation.


Assuntos
Canabinoides/química , Receptores Colinérgicos/química , Doença de Alzheimer/tratamento farmacológico , Amidoidrolases , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Carbamatos/farmacologia , Química Farmacêutica/métodos , Colinérgicos , Cumarínicos/uso terapêutico , Desenho de Fármacos , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Conformação Proteica , Ratos , Receptores de Canabinoides , Rivastigmina/farmacologia
16.
Front Pharmacol ; 12: 643605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995052

RESUMO

Osteoarthritis (OA) is a degenerative joint disease that primarily affects people over 65 years old. During OA progression irreversible cartilage, synovial membrane and subchondral bone degradation is observed, which results in the development of difficult-to-treat chronic pain. One of the most important factors in OA progression is joint inflammation. Both proinflammatory and anti-inflammatory factors, as well as extracellular matrix degradation enzymes (matrix metalloproteinases (MMPs), play an important role in disease development. One of the most widely used animal OA models involves an intra-articular injection of sodium monoiodoacetate (MIA) directly into the joint capsule, which results in glycolysis inhibition in chondrocytes and cartilage degeneration. This model mimics the degenerative changes observed in OA patients. However, the dose of MIA varies in the literature, ranging from 0.5 to 4.8 mg. The aim of our study was to characterize grading changes after injection of 1, 2 or 3 mg of MIA at the behavioral and molecular levels over a 28-day period. In the behavioral studies, MIA injection at all doses resulted in a gradual increase in tactile allodynia and resulted in abnormal weight bearing during free walking sequences. At several days post-OA induction, cartilage, synovial membrane and synovial fluid samples were collected, and qPCR and Western blot analyses were performed. We observed significant dose- and time-dependent changes in both gene expression and protein secretion levels. Inflammatory factors (CCL2, CXCL1, IL-1ß, COMP) increased at the beginning of the experiment, indicating a transient inflammatory state connected to the MIA injection and, in more severe OA, also in the advanced stages of the disease. Overall, the results in the 1 mg MIA group were not consistently clear, indicating that the lowest tested dose may not be sufficient to induce long-lasting OA-like changes at the molecular level. In the 2 mg MIA group, significant alterations in the measured factors were observed. In the 3 mg MIA group, MMP-2, MMP-3, MMP-9, and MMP-13 levels showed very strong upregulation, which may cause overly strong reactions in animals. Therefore, a dose of 2 mg appears optimal, as it induces significant but not excessive OA-like changes in a rat model.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33915294

RESUMO

N-Arachidonoyl-ethanolamine (AEA) is an endocannabinoid (eCB) and endogenous lipid mimicking many of the effects of Δ9-tetrahydrocannabinol, notably on brain functions, appetite, pain and inflammation. The eCBs and eCB-like compounds contain fatty acids, the main classes being the monoacylglycerols and the N-acyl-ethanolamines (NAEs). Thus, each long chain fatty acid likely exists under the form of a monoacylglycerol and NAE, as it is the case for arachidonic acid (AA) and linoleic acid (LA). Following their biosynthesis, AA and AEA can be further metabolized into additional eicosanoids, notably by the 15-lipoxygenase pathway. Thus, we postulated that NAEs possessing a 1Z,4Z-pentadiene motif, near their omega end, would be transformed into their 15-lipoxygenase metabolites. As a proof of concept, we investigated N-linoleoyl-ethanolamine (LAE). We successfully synthesized LEA and LEA-d4 as well as their 15-lipoxygenase-derived derivatives, namely 13-hydroxy-9Z,11E-octadecadienoyl-N-ethanolamine (13-HODE-EA) and 13-HODE-EA-d4, using Novozyme 435 immobilized on acrylic resin and soybean lipoxygenase respectively. We also show that both human 15-lipoxygenase-1 and -2 can biosynthesize 13-HODE-EA. Co-incubation of LEA and LA with either human 15-lipoxygenase led to the biosynthesis of 13-HODE-EA and 13-HODE in a ratio equal to or greater than 3:1, indicating that LEA is preferred to LA by these enzymes. Finally, we show that 13-HODE-EA is found in human saliva and skin and is a weak although selective TRPV1 agonist. The full biological importance of 13-HODE-EA remains to be explored.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Etanolamina/metabolismo , Ácidos Linoleicos/síntese química , Saliva/metabolismo , Pele/metabolismo , Técnicas de Química Sintética , Humanos , Ácidos Linoleicos/metabolismo , Ácidos Linoleicos/farmacologia , Terapia de Alvo Molecular
18.
Biomed Pharmacother ; 136: 111283, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33482616

RESUMO

BACKGROUND AND PURPOSE: The endocannabinoid system became a promising target for osteoarthritis (OA) treatment. Functional selectivity of cannabinoids may increase their beneficial properties while reducing side effects. The aim of the present study was to evaluate the analgesic potential of two functionally biased CB2 agonists in different treatment regimens to propose the best pharmacological approach for OA management. EXPERIMENTAL APPROACH: Two functionally selective CB2 agonists were administered i.p. - JWH133 (cAMP biased) and GW833972A (ß-arrestin biased), in a chemically induced model of OA in rats. The drugs were tested in acute and chronic treatment regimens. Analgesic effects were assessed by pressure application measurement and kinetic weight bearing. X-ray microtomography was used for the morphometric analysis of the femur's subchondral bone tissue. Underlying biochemical changes were analysed via RT-qPCR. KEY RESULTS: Dose-response studies established the effective dose for both JWH133 and GW833972A. In chronic treatment paradigms, JWH133 was able to elicit analgesia throughout the course of the experiment, whereas GW833972A lost its efficacy after 2 days of treatment. Later studies revealed improvement in subchondral bone architecture and decrement of matrix metalloproteinases and proinflammatory factors expression following JWH133 chronic treatment. CONCLUSION AND IMPLICATIONS: Data presents analgesic and disease-modifying potential of CB2 agonists in OA treatment. Moreover, the study revealed more pronounced tolerance development for analgesic effects of the ß-arrestin biased CB2 agonist GW833972A. These results provide a better understanding of the molecular underpinnings of the anti-nociceptive potential of CB2 agonists and may improve drug development processes for any cannabinoid-based chronic pain therapy.


Assuntos
Analgésicos/farmacologia , Artralgia/prevenção & controle , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Articulações/efeitos dos fármacos , Osteoartrite/prevenção & controle , Limiar da Dor/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Receptor CB2 de Canabinoide/agonistas , Animais , Artralgia/etiologia , Artralgia/metabolismo , Artralgia/fisiopatologia , Modelos Animais de Doenças , Tolerância a Medicamentos , Ácido Iodoacético , Articulações/metabolismo , Articulações/fisiopatologia , Masculino , Osteoartrite/induzido quimicamente , Osteoartrite/metabolismo , Osteoartrite/fisiopatologia , Ratos Wistar , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais , Fatores de Tempo
19.
Int J Mol Sci ; 21(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036283

RESUMO

Osteoarthritis (OA) is a degenerative joint disease manifested by movement limitations and chronic pain. Endocannabinoid system (ECS) may modulate nociception via cannabinoid and TRPV1 receptors. The purpose of our study was to examine alterations in the spinal and joint endocannabinoid system during pain development in an animal model of OA. Wistar rats received intra-articular injection of 3mg of sodium monoiodoacetate (MIA) into the knee joint. Animals were sacrificed on day 2, 7, 14, 21, 28 after injection and lumbar spinal cord, cartilage and synovium were collected. Changes in the transcription levels of the ECS elements were measured. At the spinal level, gene expression levels of the cannabinoid and TRPV1 receptors as well as enzymes involved in anandamide synthesis and degradation were elevated in the advanced OA phase. In the joint, an important role of the synovium was demonstrated, since cartilage degeneration resulted in attenuation of the changes in the gene expression. Enzymes responsible for anandamide synthesis and degradation were upregulated particularly in the early stages of OA, presumably in response to early local joint inflammation. The presented study provides missing information about the MIA-induced OA model and encourages the development of a therapy focused on the molecular role of ECS.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Osteoartrite/metabolismo , Dor/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Ácidos Araquidônicos/genética , Modelos Animais de Doenças , Progressão da Doença , Endocanabinoides/genética , Regulação da Expressão Gênica , Injeções Intra-Articulares , Ácido Iodoacético/efeitos adversos , Ácido Iodoacético/toxicidade , Articulação do Joelho/metabolismo , Osteoartrite/complicações , Osteoartrite/genética , Dor/etiologia , Dor/genética , Ratos , Ratos Wistar , Canais de Cátion TRPV/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...